



h 1450
h 1190
TUBI: 26
TUBI: 30
TUBI: 37

h 1738

Materiale	acciaio al carbonio					
Tubi - Ø	22x1,2					
Collettori - Ø	35x1,5					
Connessioni	3x1/2' *					
Fissaggi a muro	3					
Pressione max d'esercizio	6 bar					
Temperatura max d'esercizio	120 °C					
Verniciatura	a polveri epossipoliestere					
Imballo	angolari in P.P. + scatola e protezioni in cartone					
* attacco per la valvola di sfiato, incluso						

Dotazione di serie: 1 kit di fissaggi a muro - 1 valvola di sfiato

Bianco RAL 9016 - dritto

codice	h mm	largh. mm	interasse mm	peso kg	acqua It	watt ф	Δτ42,5°C watt φ 70/55/20°	watt ф	Δτ 50°C kcal/h	Δτ 60°C btu	resistenza watt	Δτ 50° C esponente n
21159	1190	500	450	11,1	5,6	624	513	336	537	2658	700	1,21295
21160	1450	500	450	12,8	6,9	737	603	392	634	3153	700	1,23599
21161	1738	500	450	15,8	8,2	900	736	478	774	3853	1000	1,24225

Antracite sabbiato - dritto

codice	h mm	largh. mm	interasse mm	peso kg	acqua It	watt ф	Δτ42,5°C watt φ 70/55/20°	watt ф	Δτ 60°C btu	resistenza watt	Δτ 50° C esponente n
21170	1190	500	450	11,1	5,6	624	513	336	2658	700	1,21295
21171	1450	500	450	12,8	6,9	737	603	392	3153	700	1,23599
21172	1738	500	450	15,8	8,2	900	736	478	3853	1000	1,24225

Cromato - dritto

codice	h mm	largh. mm	interasse mm	peso kg	acqua It	watt ф	Δτ42,5°C watt φ 70/55/20°	watt ф	Δτ 60°C btu	resistenza watt	Δτ 50° C esponente n
21162	1190	500	450	11,3	5,6	431	350	224	1860	500	1,28663
21163	1450	500	450	13,1	6,9	510	415	266	2198	500	1,27681
21164	1738	500	450	16,7	8,1	622	507	327	2672	700	1,26027

Soft gold - dritto

codice	h mm	largh. mm	interasse mm	peso kg	acqua It	watt ф	Δτ42,5°C watt φ 70/55/20°	watt ф	Δτ 60°C btu	resistenza watt	Δτ 50° C esponente n
77758	1190	500	450	10,8	5,7	537	438	283	2307	500	1,25509
77759	1450	500	450	12,7	6,5	633	516	332	2723	700	1,26517
77760	1738	500	450	15,6	8,0	777	633	407	3341	700	1,26353

I radiatori vengono testati presso laboratori accreditati secondo la norma EN-442 che determina la resa nominale fissando un Δτ a 50° C. Il Δτ è la differenza tra la temperatura media dell'acqua all'interno del radiatore e la temperatura dell'ambiente e viene calcolato con la seguente formula: (((T,+T,)/2)-T,). es: $((75+65/2)-20)=50^{\circ}$ C. Per ottenere il valore della resa termica con un $\Delta \tau$ diverso, può essere utilizzata la seguente formula: $\phi_x = \phi_{\Delta \tau 50}^{} (\Delta \tau_x/50)^n$. Di seguito un esempio per calcolare la resa con $\Delta \tau$ 60° del codice 21159: 624*(60/50)1.21295= 779.

Per ottenere il valore in kcal/h, moltiplicare la resa in watt per 0,85984. Per ottenere il valore in btu, moltiplicare la resa in watt per 3,412.

 T_1 = temperatura di mandata - T_2 = temperatura di ritorno - T_3 = temperatura ambiente. ϕ_x = resa da calcolare - $\phi_{\Delta\tau 50}$ = resa a $\Delta\tau$ 50° C (tabella) - $\Delta\tau_x$ = valore di $\Delta\tau$ da calcolare - n = esponente "n" (tabella).